ارزیابی کارایی الگوریتم های ماشین بردار پشتیبان جهت طبقه بندی کاربری اراضی با استفاده از داده های ماهواره ای etm+ لندست (مطالعه موردی: حوزه سد ایلام)
Authors
abstract
طبقهبندی کاربری اراضی با استفاده از تصاویر سنجش از دور یکی از مهمترین کاربردهای سنجش از دور است و بسیاری از الگوریتمها برای این منظور توسعه یافتهاند. این مطالعه کارایی الگوریتمهای ماشین بردار پشتیبان[1](svms) را در طبقهبندی تصاویر ماهوارهای مورد بررسی قرار میدهد. ماشینهای بردار پشتیبان یک گروه از الگوریتمهای طبقهبندی نظارت شده یادگیری ماشینی هستند که در زمینه سنجش از دور مورد استفاده قرار گرفتهاند. دقت طبقهبندی حاصل از svms باتوجه به نوع تابع کرنل متغیر است. در این مطالعه، الگوریتمهای svm برای طبقهبندی کاربری اراضی حوزه سد ایلام با استفاده از دادههای etm+ لندست مورد استفاده قرار گرفته است. طبقهبندی با استفاده از روش ماشینهای بردار پشتیبان، بصورت خودکار و با استفاده از چهار نوع کرنل خطی[2]، چندجملهای[3]، شعاعی[4] و حلقوی[5] اجرا شده است. در ضمن، کارکرد این روش با روش طبقهبندی حداکثر احتمال مقایسه شده است. نتایج نشان میدهد که الگوریتمهای svm خصوصاً سه کرنل خطی، چندجملهای و شعاعی نسبت به روش طبقهبندی حداکثر احتمال از نظر دقت کل (حدود 10%) و ضریب کاپا (حدود 15%) برتری دارد. بنابراین این مطالعه کارایی و قابلیت الگوریتمهای svm را در طبقهبندی تصاویر سنجش از دور اثبات مینماید.
similar resources
ارزیابی کارایی الگوریتمهای ماشین بردار پشتیبان جهت طبقهبندی کاربری اراضی با استفاده از دادههای ماهوارهای ETM+ لندست (مطالعه موردی: حوزه سد ایلام)
طبقهبندی کاربری اراضی با استفاده از تصاویر سنجش از دور یکی از مهمترین کاربردهای سنجش از دور است و بسیاری از الگوریتمها برای این منظور توسعه یافتهاند. این مطالعه کارایی الگوریتمهای ماشین بردار پشتیبان[1](SVMs) را در طبقهبندی تصاویر ماهوارهای مورد بررسی قرار میدهد. ماشینهای بردار پشتیبان یک گروه از الگوریتمهای طبقهبندی نظارت شده یادگیری ماشینی هستند که در زمینه سنجش از دور مورد استفاده ...
full textارزیابی کارایی روش طبقه بندی درختی جهت استخراج نقشه کاربری اراضی با استفاده از داده های ماهواره ای درحوزه ی چم¬گردلان استان ایلام
یکی از کاربردهای عمدهی دادههای ماهوارهای طبقهبندی پوشش سطح زمین میباشد. طیّ سالهای گذشته تعدادی الگوریتمهای طبقهبندی برای طبقهبندی دادههای سنجش از دور ابداع شدهاند. قابل توجهترین آنها شامل روشهای حداکثر احتمال، روشهای شبکه عصبی مصنوعی و طبقهبندیهای درختی میباشد. در این مطالعه، ابتدا تصحیحات هندسی و رادیومتری بر روی دادههای ETM+ صورت گرفت. سپس با بازدیدهای میدانی ، طبقات مختلف ک...
full textاستفاده از داده های ماهواره لندست سنجنده + ETM جهت بررسی وضعیت پوشش زمین ( مطالعه موردی: کاشان)
full text
تعیین روش بهینه طبقه بندی و نقشه سازی کاربری/ پوشش اراضی با مقایسه الگوریتم های شبکه عصبی مصنوعی وماشین بردار پشتیبان با استفاده از داده های ماهواره ای (مطالعه موردی: تالاب بین المللی هامون)
زمینه و هدف: طبقه بندی تصاویر یکی از روش های مهم درتفسیرتصاویر ماهواره ای است که کاربرد زیادی در بررسی تغییرات زمین دارد. در این میان داده های ماهواره ای به دلیل ارایه اطلاعات به روز، ارزان بودن و تنوع اشکال بهترین وسیله برای آشکارسازی و ارزیابی تغییرات شناخته شده است. از طرفی دیگر در سال های اخیر روش های شبکه های عصبی مصنوعی به طور وسیع و گسترده جهت طبقه بندی داده های ماهواره ...
full textمقایسه روش های طبقه بندی ماشین بردار پشتیبان و شبکه عصبی مصنوعی در استخراج کاربری های اراضی از تصاویر ماهواره ای لندست tm
طبقه بندی و تهیه نقشه کاربری های اراضی یکی از پرکاربردترین موارد در استفاده از داده های سنجش از دور است. تعدادی از روش های پیشرفته تر طبقه بندی در دهه های گذشته توسعه پیداکرده اند که از آنها می توان به شبکه های عصبی مصنوعی و ماشین بردار پشتیبان اشاره کرد. در این مطالعه از تصاویر لندستtm باقدرت تفکیک 30 متر جهت استخراج کاربری های اراضی با استفاده از دو روش طبقه بندی شبکه عصبی مصنوعی و ماشین بردا...
full textمقایسه روش های شبکه عصبی و ماشین بردار پشتیبان در استخراج نقشه های کاربری و پوشش اراضی با استفاده از تصاویر لندست 8 (مطالعه موردی: حوضه صوفی چای)
تهیه نقشه کاربری و پوشش اراضی برای برنامهریزی و مدیریت منابع طبیعی امری ضروری میباشد. در این بین استفاده از دادههای سنجش از دور با توجه به ارائه اطلاعات به روز، پوشش تکراری، کمهزینه بودن در ارزیابی منابع طبیعی جایگاه خاصی دارد. لذا در این پژوهش، تصاویر لندست 8 بهعنوان داده ورودی برای تهیه نقشه کاربری اراضی در سطح 2و1 مورد استفاده قرار گرفت. در این بین، با توجه به جدید بودن این تصاویر، تصحی...
full textMy Resources
Save resource for easier access later
Journal title:
تحقیقات مرتع و بیابان ایرانPublisher: موسسه تحقیقات جنگلها و مراتع کشور
ISSN 1735-0875
volume 18
issue 3 2011
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023